The adaptation to standing long jump distance in parkour is performed by the modulation of specific variables prior and during take-off

Autor

Grosprêtre, S., Ufland, P. & Jecker, D.

2018

  |

Movement and Sports Sciences - Science et Motricite

Tipo de publicación

Artículo de revista

Idioma

Inglés

Palabras clave

Resumen

The present study aimed at investigating different variables that can be manipulated prior to and during take-off, to execute a specific standing long jump (SLJ) distance, according to jump expertise in parkour practitioners (= traceurs). Fourteen healthy young traceurs were included and separated into two groups: beginners (BEG) and experts (EXP). Firstly, classical vertical jump battery was used to characterize participants arm use and leg efficiency. Secondly, standing long jump (SLJ) performances were analyzed at four distances: 70, 80, 90, and 100% of each participant’s maximal SLJ distance. The force-time curves of the ground reaction forces (GRF) and the center of pressure (CoP) trajectory were measured with a force platform during the jump impulses. Take-off speed, angle and jump trajectory were estimated. For all of the participants, take-off speed and angle, power output, and vertical GRF during jump preparation (counter movement) varied with distance. The EXP group exhibited greater backward CoP excursion, greater arm participation, greater take-off velocity and a greater modulation of take-off angle than BEG group. When comparing jumps of similar distance, EXP exhibited a more curvilinear trajectory with a higher peak than BEG. To conclude, different motor strategies can be adopted based on the jump distance, and these strategies can evolve as parkour experience increases

URL